
CS106B
Spring 2012

Handout #12S
May 2, 2012

Practice Midterm 1 Solutions

Based on a handout by Eric Roberts

Problem 1: Tracing C++ programs and big-O (10 points)

This problem can be solved either by following through the computation or by figuring out what each
function does. In this case, it is easier to undertake the latter approach. The enigma function computes
the product of n1 and n2 by recursively summing n1 copies of n2. The mystery function then uses
enigma to multiply n copies of the integer 2. The value of mystery(n) is therefore 2n, which means
that mystery(3) returns 8.

Computing the complexity order requires noticing that the computation of mystery(n) makes n calls
to enigma. Given the coding of mystery, each call to enigma requires a constant amount of work
because the first argument is always 2. The complexity is therefore proportional to n times some
constant, which is O(N).

Problem 2: Vectors, grids, stacks, and queues (10 points)

There are many strategies for solving this problem. A linear-time solution that uses the remainder
operator to achieve the wrap-around semantics of roll looks like this:

- 1 -

Problem 3: Lexicons, maps, and iterators (15 points)
/*
 * Function: generateCompletions
 * Usage: Vector<string> completions = generateCompletions(digits, lexicon);
 * --
 * Generates all possible completions from a string of digits
 * and returns the result as a Vector.
 */
Vector<string> generateCompletions(string digits, Lexicon& lex) {
 Vector<string> result;
 foreach (string word in lex) {
 if (matchesDigits(word, digits)) {
 result += word;
 }
 }
 return result;
}

/* Function: prefixMatches
 * Usage: bool prefixMatches(string word, string digits);
 * --
 * Given a word and a string of digits, returns whether that
 * word could be generated from the given cell phone digits.
 */
bool prefixMatches(string word, string digits) {
 /* If the word is too long, we can immediately report failure. */
 if (word.length() > digits.length()) return false;

 /* Build a map from digits to matching letters. */
 Map<char, string> digitMap;
 digitMap['2'] = "abc";
 digitMap['3'] = "def";
 digitMap['4'] = "ghi";
 digitMap['5'] = "jkl";
 digitMap['6'] = "mno";
 digitMap['7'] = "pqrs";
 digitMap['8'] = "tuv";
 digitMap['9'] = "wxyz";

 /* Scan across the characters of the digits string and confirm each
 * matches the appropriate letter of the word.
 */
 for (int i = 0; i < digits.length(); i++) {
 if (digitMap[digits[i]].find(word[i]) == string::npos) {
 return false;
 }
 }
 return true;
}

- 2 -

Problem 4: Recursive functions (10 points)

The following implementation computes nk in O(log k) time:

And if the assignments seem inelegant, here is another coding in a more conventional recursive form:

- 3 -

Problem 5: Recursive procedures (15 points)

Once again, there are several strategies you might use to solve this problem. The one that probably
requires the least amount of new work is to adapt the listPermutations code from Chapter 8 to
generate all permutations of the domino vector and then see if any of them contain only dominos that
match end for end. The following implementation is somewhat more efficient.

- 4 -

