CS106B Handout #12S
Spring 2012 May 2, 2012

Practice Midterm 1 Solutions

Based on a handout by Eric Roberts

Problem 1: Tracing C++ programs and big-O (10 points)

This problem can be solved either by following through the computation or by figuring out what each
function does. In this case, it is easier to undertake the latter approach. The enigma function computes
the product of n1 and n2 by recursively summing n1 copies of n2. The mystery function then uses
enigma to multiply n copies of the integer 2. The value of mystery (n) is therefore 2°, which means
that mystery (3) returns 8.

Computing the complexity order requires noticing that the computation of mystery (n) makes n calls
to enigma. Given the coding of mystery, each call to enigma requires a constant amount of work
because the first argument is always 2. The complexity is therefore proportional to n times some
constant, which is O(N).

Problem 2: Vectors, grids, stacks, and queues (10 points)

There are many strategies for solving this problem. A linear-time solution that uses the remainder
operator to achieve the wrap-around semantics of rol1l looks like this:

/*

* Function: roll

* Usage: roll(stack, n, k);

*

* Rotates the top n elements of the stack k positions toward the top.

* This function generates an error if either of the arguments is negative
*

or if n is greater than the size of the stack.

*/

void roll (Stack<char> & stack, int n, int k) {

if (n <0 || k <0 || n > stack.size()) {
error ("roll: argument out of range");

}

Vector<char> vec;

for (int i = 0; i < n; i++) {
vec.add (stack.pop());

}

for (int i = n - 1; i >= 0; i--) {
stack.push(vec[(i + k) % n]);

}

Problem 3: Lexicons, maps, and iterators (15 points)
/*
* Function: generateCompletions
* Usage: Vector<string> completions = generateCompletions(digits, lexicon);
X e e e e — — ————— — i ——— —————
* Generates all possible completions from a string of digits
* and returns the result as a Vector.
*/
Vector<string> generateCompletions (string digits, Lexiconé& lex) ({
Vector<string> result;
foreach (string word in lex) {
if (matchesDigits(word, digits)) {
result += word;
}
}

return result;

/* Function: prefixMatches
* Usage: bool prefixMatches(string word, string digits);

* Given a word and a string of digits, returns whether that
* word could be generated from the given cell phone digits.
*/
bool prefixMatches (string word, string digits) {
/* If the word is too long, we can immediately report failure. */
if (word.length() > digits.length()) return false;

/* Build a map from digits to matching letters. */
Map<char, string> digitMap;

digitMap['2'] = "abc";
digitMap['3'] = "def";
digitMap['4'] = "ghi";
digitMap['5'] = "jk1";
digitMap['6'] = "mno";
digitMap['7'] = "pqgrs";
digitMap['8'] = "tuv";
digitMap['9'] = "wxyz";

/* Scan across the characters of the digits string and confirm each
* matches the appropriate letter of the word.
*/
for (int i = 0; i < digits.length(); i++) {

if (digitMap[digits[i]].find(word[i]) == string::npos) {

return false;

}

}

return true;

Problem 4: Recursive functions (10 points)

The following implementation computes n* in O(log k) time:

~

* % F F Ok Ok O * *

*
~

Function: raiseIntToPower
Usage: p = raiselIntToPower(n, k);

This function returns n to the kth power. It depends on

the recursive insight that n to the k is the square of
n to the k / 2 power, for even values of k. For odd
values of k, the result is the same except for an extra

factor of n.

int raiseIntToPower (int n, int k) {

if (k == 0) {
return 1;

} else {
int halfPower = raiseIntToPower(n, k / 2);
int result = halfPower * halfPower;
if (k $ 2 == 1) result *= n;

return result;

And if the assignments seem inelegant, here is another coding in a more conventional recursive form:

int raiseIntToPower (int n, int k) {

if (k == 0) {
return 1;
} else if (k $ 2 == 0) {
return square (raiseIntToPower(n, k / 2));
} else {
return n * square(raiseIntToPower(n, k / 2));

}

Function: square
Usage: int sq = square(n);

Returns the square of the argument n. This function exists only
to ensure that the solution is entirely functional, in the sense
that it uses no assignment statements.

int square(int n) {

}

return n * n;

Problem 5: Recursive procedures (15 points)

Once again, there are several strategies you might use to solve this problem. The one that probably
requires the least amount of new work is to adapt the 1istPermutations code from Chapter 8 to
generate all permutations of the domino vector and then see if any of them contain only dominos that
match end for end. The following implementation is somewhat more efficient.

/*

* Function: formsDominoChain

* Usage: if (formsDominoChain (dominos))

*

* Returns true if the vector forms a domino chain. This function is
* implemented as a wrapper to the method extendsDominoChain.

*/

bool formsDominoChain (Vector<Domino> & dominos) {
return extendsDominoChain (-1, dominos);

}

~
*

Function: extendsDominoChain
Usage: if (lastDots, dominos)

Checks to see if the domino vector forms a chain, starting
with the a domino that matches lastDots; if lastDots is -1
(which is used to indicate the first value in a chain), then
the next domino can begin with any number of dots. The
recursive insight is that the entire set forms a chain if
and only if there is some domino whose left side matches the
designated starting number and the remaining dominos form a
chain starting with the count from that domino's right side
or, conversely, there is a domino that fits if you reverse
its left and right sides.

* % ok ok F Ok H Ok % Ok * * *

*
~

bool extendsDominoChain (int lastDots, Vector<Domino> & dominos) {
if (dominos.isEmpty()) {
return true;

} else {
for (int i = 0; i < dominos.size(); i++) {
Domino candidate = dominos[i];
Vector<Domino> rest = dominos;
rest .removeAt (i) ;
if (lastDots == -1 || lastDots == candidate.leftDots) {
if (extendsDominoChain (candidate.rightDots, rest)) {
return true;
}
}
if (lastDots == -1 || lastDots == candidate.rightDots) ({

if (extendsDominoChain (candidate.leftDots, rest)) {
return true;
}
}
}

return false;

